Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space
نویسندگان
چکیده
منابع مشابه
Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space
Let C be a closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping of C into itself, let A be an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. We introduce an iterative sequence of finding a point of F (T )∩(A+B)0, where F (T ) is the set of fixed points of T and (A + B)0 is the s...
متن کاملStrong convergence theorems for quasi-nonexpansive mappings and maximal monotone operators in Hilbert spaces
We present the strong convergence theorem for the iterative scheme for finding a common element of the fixed-point set of a quasi-nonexpansive mapping and the zero set of the sums of maximal monotone operators in Hilbert spaces. Our results extend and improve the recent results of Takahashi et al. (J. Optim. Theory Appl. 147:27-41, 2010) and Takahashi and Takahashi (Nonlinear Anal. 69:1025-1033...
متن کاملConvergence Theorems for Maximal Monotone Operators, Weak Relatively Nonexpansive Mappings and Equilibrium Problems
We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a ...
متن کاملConvergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces
In this paper, we introduce two kinds of iterative algorithms for finding zeroes of maximal monotone operators, and establish strong and weak convergence theorems of the modified proximal point algorithms. By virtue of the established theorems, we consider the problem of finding a minimizer of a convex function. Mathematics Subject Classification: Primary 47H17; Secondary 47H05, 47H10
متن کاملStrong Convergence Theorems by Hybrid Methods for Maximal Monotone Operators and Generalized Hybrid Mappings
Let C be a closed convex subset of a real Hilbert space H. Let T be a supper hybrid mapping of C into H, let A be an inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. In this paper, we introduce two iterative sequences by hybrid methods of finding a point of F (T )∩ (A+B)−10, where F (T ) is the set of fixed p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cubo (Temuco)
سال: 2011
ISSN: 0719-0646
DOI: 10.4067/s0719-06462011000100002